Genetic Relationship between Purple and Wine Testa Color in Peanut ${ }^{1}$

W. D. Branch ${ }^{2}$

Abstract

A better understanding of the genetic relationship among different testa colors is needed in peanut (Arachis hypogaea L.) breeding programs. Numerous genes are involved in this important U.S. market quality trait. However, the relationship among some of these genes is not yet known. The objective of this study was to determine the interaction among the three genes (P, w_{1}, and w_{2}) controlling purple and wine testa color. No maternal or cytoplasmic differences were found among three reciprocal purple \times wine testcrosses. The $\mathrm{F}_{1}, \mathrm{~F}_{2}$, and F_{3} segregation results suggest that purple testa color of PI 331334 differs from that of wine testa color parental lines (PI 264549, Wine-Frr 1 and Wine-Frr 2) by only two genes. These findings illustrate that the dominant purple testa color gene (P) is independent from at least one of the two recessive wine genes ($w_{1} w_{1}$ or $w_{2} w_{2}$).

Key Words: Arachis hypogaea L., cross combinations, groundnut, inheritance, seed coat.

In the cultivated peanut (Arachis hypogaea L.), two sets of duplicate dominant genes ($F_{1} F_{2}$ and $D_{1} D_{2}$) have long been known to interact in the basic development of

[^0]testa colors, pink and tan (Higgins, 1940). It takes at least one dominant F and one dominant D gene for color to be expressed (Wynne and Coffelt, 1982; Murphy and Reddy, 1993). Otherwise, if either or both sets of these two genes are homozygeously recessive, the result is white testa color (Hammons, 1973). Two dominant genes, Wh and Wh ${ }_{2}$, have been found that also control white testa color (Norden et al., 1988; Branch, 1989; Knauft et al., 1991).
Branch and Holbrook (1988) reported on the genetic relationship between the R_{1}, r_{2}, and r_{3} genes for red peanut testa color. The dominant R_{1} gene was found to be inherited independently from at least one of the two recessive genes ($r_{2} r_{2}$, or $r_{3} r_{3}$) controlling red testa color.

Purple testa color is controlled by a single dominant gene, P (Branch, 1985). Wine testa color has been shown to be controlled by two recessive genes, w_{1} and w_{2} (Branch, 1997). However, the genetic relationship among these genes is not known. The objective of this genetic study was to determine the interaction among the three genes (P, w_{1}, and w_{2}) controlling purple and wine peanut testa color.

Materials and Methods

Three reciprocal testcrosses were made in the greenhouse between purple and wine testa colors. The purple testa color parental line PI 331334 was used as the common parent in each cross combination. This particular purple genotype had been found previously to be controlled by the single dominant gene, P (Branch, 1985). The wine testa color parental lines were PI 264549 and two true breeding natural-cross derived wine genotypes (Wine-Frr 1 and Wine-Frr 2) from the Florunner cultivar. Each had been found previously to be
controlled by duplicate recessive genes, w_{1} and w_{2} (Branch, 1997).

The F_{1}, F_{2}, and \mathbf{F}_{3} cross populations were all spaceplanted in field nursery plots at the agronomy research farm near the Univ. of Georgia, Coastal Plain Exp. Sta. at Tifton during 1995, 1996, and 1997, respectively. During each growing season the phenotypic classification of testa color from individual plants was based on sound mature seed. Segregation data among F_{2} plants and F_{3} progenies were analyzed by the CHISQA computer program of Hanna et al. (1978).

Results and Discussion

The F_{1} testa color from all three reciprocal purple \times wine testcrosses was classified as a dull purplish tan color. This suggests that purple is completely dominant to wine and incompletely dominant to the basic tan or pink testa color which agrees with earlier reports (Branch, 1985, 1997).

Because of the visual difficulties in separating purple and wine as well as pink and tan peanut seed, these two sets of testa colors were grouped together for F_{2} and F_{3} classification. The F_{2} segregation from the three testcrosses showed a very good fit to 13 purple + wine : 3 tan + pink ratio for testa color (Table 1). Total, pooled, and homogeneity chi-square values also were found acceptable for the 13:3 ratio. No maternal or cytoplasmic differences were detected among each of the three reciprocal testcrosses. These results suggest only two gene differences among the purple and wine testa color parental lines used in this study and implies that the purple testa color of PI 331334 also is independent of one of the two duplicate recessive wine testa color genes, w_{1} or w_{2}. Similar findings were likewise found among the three genes (R_{l}, r_{2}, and r_{3}) for red peanut testa color (Branch and Holbrook, 1988).
F_{3} progeny segregation from individual F_{2} plants with purple or wine testa colors fit a seven nonsegregating (all purple or wine) to six segregating (13 purple + wine $: 3$ tan + pink; or 3 purple + wine : 1 tan + pink) ratio (Table 2). Likewise, F_{3} progeny segregation from individual F_{2} plants with tan and pink testa colors fit a two segregating (3 tan + pink : 1 wine) to one nonsegregating (all tan + pink) ratio (Table 3). The F_{3} data thus support the F_{2} results for a 13: 3 dihybrid genetic model.

Such genetic interaction would be expected based upon the following parental testa color genotypes: purple $=P$ $W_{1} w_{2}$ and wine $=p w_{1} w_{2}$. These findings also illustrate that the dominant purple testa color gene (P) is independent from at least one of the two recessive wine genes $\left(w_{1} w_{1}\right.$ or $\left.w_{2} w_{2}\right)$.

Literature Cited

Branch, W.D. 1985. Inheritance of purple and purple-stripe testa colors in the peanut. J. Hered. 76:225-226.
Branch, W.D. 1989. Inheritance of dominant white peanut testa color. J. Hered. 80:155-156.

Branch, W.D. 1997. Genetic studies involving wine testa color in peanut. Peanut Sci. 24:60-62.
Branch, W.D., and C.C. Holbrook. 1988. Genic relationship between R_{1}, R_{2} and R_{3} for red peanut testa color. Peanut Sci. 15:13-14.
Hammons, R.O. 1973. Genetics of Arachis hypogaea, pp. 135-173. In Peanuts-Culture and Uses. Amer. Peanut Res. Educ. Assoc., Stillwater, OK.

Table 1. F_{2} plant segregation fortesta color among threepeanut reciprocal purple \times wine testcrosses.

Testcross	No. families	F_{2} testa color		χ^{2}	
		Wine+Purpl	$\overline{\text { Pink+Tan }}$	(13:3)	P
PI $331334 \times$ PI 264549	4	377	99	1.311	0.25
PI $331334 \times$ Wine-Frr 1	4	520	137	1.906	0.17
PI $331334 \times$ Wine-Frr 2	4	606	141	0.008	0.93
Total				3.225	0.36
Pooled		1503	377	2.096	0.15
Homogeneity				1.129	0.57

Table2. F_{3} progeny segregation among F_{2} peanut plants with purple and wine testa colors from three purple \times wine testcrosses.

Testcross	$\mathrm{F}_{2: 3}$ testa color		χ^{2}	
	$\overline{\text { Nonsegregating }}$(all purple+wine)$\overline{\text { Segregating }}$ $(13: 3 \& 3: 1)^{\mathrm{a}}$			
			(7:6)	P
PI $331334 \times$ PI 264549	19	12	0.691	0.42
PI $331334 \times$ Wine-Frr 1	14	14	0.167	0.69
PI $331334 \times$ Wine-Frr 2	215	15	0.179	0.68
Total			1.037	0.79
Pooled	48	41	0.000	0.99
Homogeneity			1.037	0.61

${ }^{\text {a }} 13$ purple + wine: 3 tan + pink; or 3 purple + wine $: 1$ tan + pink.

Table 3. F_{3} progeny segregation among F_{2} peanut plants with tan and pink testa colors from three purple x wine testcrosses.

	$\mathrm{F}_{2: 3}$ testa color				
Testcross	Segregating (3 tan+pink: 1 wine) $)$	Nonsegregating (all tan+pink)		χ^{2}	
PI $331334 \times$ PI 264549		P			
PI $331334 \times$ Wine-Frr 1	6	6	3	0.000	1.00
PI $331334 \times$ Wine-Frr 2	7	4	0.200	0.67	
		3	0.050	0.83	
Total					
Pooled	19	10	0.250	0.97	
Homogeneity			0.017	0.90	

Hanna, W., Mullinix, B., and L. Grimes. 1978. Computer programs for analyses of inheritance and linkage data. Crop Sci. 18:517.
Higgins, B.B. 1940. Inheritance of seed-coat color in peanuts. J. Agric. Res. 61:745-752.
Knauft, D.A., W.D. Branch, and D.W. Gorbet. 1991. Two dominant genes for white testa color in peanut. J. Hered. 82:73-75.
Murphy, T.G.K., and P.S.Reddy. 1993. Genetics of groundnut, pp. 144-268. In Cytogenetics and Genetics of Groundnut. Intercept Ltd., Andover, England.
Norden, A.J., D.A. Knauft, and D.W. Gorbet. 1988. A dominant gene for white seedcoat in peanut (Arachis hypogaea L.). J. Hered. 79:212-214.
Wynne, J.C., and T.A.Coffelt. 1982. Genetics of Arachis hypogaea L., pp. 50-94. In H. E. Pattee and C. T. Young (eds.) Peanut Science and Technology. Amer. Peanut Res. Educ. Soc., Yoakum, TX.

[^0]: ${ }^{1}$ Contribution from the Univ. of Georgia, College of Agric. and Environ. Sci.
 ${ }^{2}$ Prof., Dept. of Crop and Soil Sciences, Univ. of Georgia, Coastal Plain Exp. Sta., Tifton, GA 31793-0748 (email:wdbranch@tifton.cpes. peachnet.edu).

